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Abstract

Rationale—Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been implicated as a 

maladaptive mediator of cardiac ischemic injury. We hypothesized that the inflammatory response 

associated with in vivo ischemia/reperfusion (I/R) is initiated through CaMKII signaling.

Objective—To assess the contribution of CaMKIIδ to the development of inflammation, infarct 

and ventricular dysfunction following in vivo I/R and define early cardiomyocyte-autonomous 

events regulated by CaMKIIδ using cardiac-specific knockout (KO) mice.

Methods and Results—Wild-type (WT) and CaMKIIδ KO mice were subjected to in vivo I/R 

by occlusion of the left anterior descending (LAD) artery for 1-hr followed by reperfusion for 

various times. CaMKIIδ deletion protected the heart against I/R damage as evidenced by 

decreased infarct size, attenuated apoptosis and improved functional recovery. CaMKIIδ deletion 

also attenuated I/R induced inflammation and upregulation of NF-κB target genes. Further studies 

demonstrated that I/R rapidly increases CaMKII activity, leading to NF-κB activation within 

minutes of reperfusion. Experiments using cyclosporine A and cardiac-specific CaMKIIδ 

knockout mice indicate that NF-κB activation is initiated independent of necrosis and within 

cardiomyocytes. Expression of activated CaMKII in cardiomyocytes lead to I kappa B kinase 

(IKK) phosphorylation and concomitant increases in nuclear p65. Experiments using an IKK 

inhibitor support the conclusion that this is a proximal site of CaMKII-mediated NF-κB activation.

Conclusions—This is the first study demonstrating that CaMKIIδ mediates NF-κB activation in 

cardiomyocytes following in vivo I/R and suggests that CaMKIIδ serves to trigger, as well as to 
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sustain subsequent changes in inflammatory gene expression that contribute to myocardial I/R 

damage.
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INTRODUCTION

Cardiac reperfusion following an acute myocardial infarction (MI) contributes to myocyte 

damage, generating what is referred to as myocardial ischemia/reperfusion (I/R) injury. 

Cardiomyocyte cell death in response to I/R results from increases in Ca2+ and reactive 

oxygen species (ROS) and is mediated through opening of the mitochondrial permeability 

transition (PT) pore1, 2. Subsequent to necrotic cardiomyocyte cell death, an inflammatory 

cascade which perpetuates further damage to cardiac tissue is activated3–5. One of the 

central players in inflammatory signaling is the transcription factor nuclear factor kappa B 

(NF-κB). Numerous reports have shown that NF-κB is activated following myocardial 

I/R6–9. Activated NF-κB translocates to the nucleus following release from its inhibitory 

subunit IκBα leading to transcriptional regulation of the expression of interleukins and 

cytokines. The NF-κB-mediated inflammatory cascade can be perpetuated through the 

ability of NF-κB targets such as TNFα and interleukins to further activate NF-κB signaling, 

as well as by the infiltration of neutrophils and other mononuclear inflammatory cells at 

sites of injury. The observation that cardiac specific overexpression of a dominant-negative 

IκBα10 or inhibition of IκBα degradation11 block NF-κB activation, reduce infarct size and 

preserve heart function in response to ischemia/reperfusion indicate that the activation of 

NF-κB within the cardiomyocyte is critical to this series of events. Pharmacological 

inhibitors of NF-κB activation also provide protection against cardiac I/R injury, attenuate 

the release of TNFα and IL-6, inhibit inflammation and apoptosis, reduce infarct size and 

improve functional recovery12–14. Thus inflammation mediated through NF-κB plays a 

critical role in infarct development following I/R.

While a maladaptive role of NF-κB in I/R injury is well documented, the initiating signals 

and cellular sites at which this response is triggered have not been fully elucidated. Ca2+/

calmodulin-dependent kinase II (CaMKII), a multifunctional heteromeric serine/threonine 

protein kinase, is activated by both Ca2+ and oxidative stress15. CaMKII has been 

demonstrated to mediate ex vivo I/R injury and cardiac remodeling after myocardial 

infarction based on experiments using pharmacological inhibitors or transgenic mice 

overexpressing a CaMKII inhibitory peptide16–19. CaM kinase has also been demonstrated 

to play a role in inflammatory gene expression in macrophages20–22. Our laboratory 

generated conventional knockout (KO) mice23 and more recently cardiac specific knockout 

mice (CKO) in which the predominant cardiac CaMKII isoform, CaMKII delta (δ)24–27 is 

deleted. The studies presented here use these CaMKIIδ KO mouse lines to test the 

hypothesis that CaMKII is required for the initiation of I/R induced NF-κB activation in 

cardiomyocytes and plays a critical role in the subsequent inflammatory responses that 

contribute to myocardial I/R damage.
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METHODS

Please see detailed Methods in the Online Supplement which provide expanded details of in 

vivo I/R and hemodynamic measurements, heart tissue preparation and nuclear 

fractionation, TUNEL, DNA laddering, CaMKII and NF-κB activity assays, 

immunofluorescence staining and affymetrix gene array analysis. Generation of global 

CaMKIIδ KO mice was described previously23. Cardiac specific CaMKIIδ KO mice were 

generated by crossing heterozygous floxed CaMKIIδ mice23 with MLC 2v-Cre mice28 as 

detailed in the Online Supplement. Myocardial I/R was induced by left anterior descending 

(LAD) coronary artery occlusion for 1 hr followed by reperfusion for various times up to 24 

hrs. All animal studies were performed in accordance with the NIH Guide for the Care and 

Use of Laboratory Animals and approved by the Institutional Animal Care and Use 

Committee of UCSD.

Statistical analysis

Data are presented as mean ± SEM as indicated and were analyzed by 2-tailed Student’s t 

test between 2 groups or by ANOVA when 3 or more groups were compared. P values of 

less than 0.05 were considered statistically significant.

RESULTS

Infarct size and heart function

To test the role of CaMKIIδ in myocardial tolerance to I/R injury, CaMKIIδ KO and WT 

mice were subjected to left anterior descending coronary artery ligation for 1 hr followed by 

reperfusion for various times. Using a direct kinase activity assay, we demonstrate that 

CaMKII is activated (Ca2+ independent “autonomous” activity is increased) in WT mice at 

3-min reperfusion following 1-hr in vivo ischemia (Figure 1A). As a further readout of 

CaMKII activation we measured phosphorylation of two substrates, the type two ryanodine 

receptor (RyR2) and phospholamban (PLN), at their CaMKII-specific phosphorylation sites. 

Marked time-dependent increases in RyR2 Ser2814 and PLN Thr17 phosphorylation were 

observed following reperfusion in WT but not in CaMKIIδ KO mice (Figure 1B).

Susceptibility to and recovery from I/R injury was then assessed. The area at risk (AAR) 

was not different in CaMKIIδ KO and WT littermates but infarct size following I/R was 

significantly reduced in the KO hearts (Figure 1C; infarct size/AAR: 46.5±7.5% in WT vs. 

32.8 ± 4.3% in KO, p<0.05). The decreased infarct was accompanied by improved 

functional recovery. Maximal left ventricular pressure (LVPmax), dP/dtmax and dP/dtmin 

were not different in WT or KO mice at baseline23 or under sham conditions (Online Table I 

and Figure 1 legend). Values for dP/dtmax and dP/dtmin measured at 24-hr reperfusion were, 

however, both significantly greater (p<0.05) in KO than in WT mice (Figure 1D). The 

difference in dP/dtmax was likely not due to altered preload since LVEDP was normal and 

did not differ between the two groups (Online Table I). The improved dP/dtmin observed 

following I/R in the KO mice may have reflected the higher LVPmax in this group since tau, 

a preferable measure of global LV relaxation, did not differ between WT and KO mice.
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Apoptosis and inflammation

It is well accepted that cardiomyocyte cell death contributes to I/R injury. We examined the 

extent of apoptosis at 24-hr reperfusion following 1-hr ischemia. Apoptosis assessed by 

TUNEL staining (Figure 2A), DNA laddering (Figure 2B) and the level of cleaved 

caspase-3 (Figure 2C) were significantly greater in WT than in KO mice. Inflammation, a 

recognized consequence of myocardial ischemic insult, was evidenced by enhanced 

mononuclear cell infiltration as assessed by CD68 staining. The increase in CD68 staining 

observed in WT hearts at 24-hr reperfusion was significantly diminished by CaMKIIδ 

deletion (Figure 2D). The expression of monocyte chemotactic protein-1 (MCP-1/CCR2) 

was also significantly increased in hearts of WT but not in KO mice following I/R (Figure 

2E).

NF-κB activation

The NF-κB family of transcription factors plays a central role in regulating the expression of 

inflammatory and cell death genes linked to cardiovascular pathology. We tested the 

hypothesis that NF-κB activation in response to I/R is regulated through CaMKIIδ. An early 

event in NF-κB activation is the degradation of IκBα. In WT mice, reperfusion following 1-

hr ischemia was accompanied by a rapid and transient decrease in IκBα expression; this 

response was seen as early as 5 minutes after reperfusion and prevented by CaMKIIδ 

deletion (Figure 3A). Subcellular fractionation of hearts isolated at various times after I/R 

demonstrated increases in the p65 NF-κB subunit in nuclear fractions from WT but not KO 

mice (Figure 3B). Finally we assessed NF-κB “activity” in ventricular lysates through 

binding to its consensus sequence (TransAM NF-κB oligonucleotide). NF-κB binding was 

not changed during ischemia, but quickly increased in WT hearts at 5 minutes and at 2 hrs of 

reperfusion; this increase was sustained throughout 24 hrs of reperfusion. (Figure 3C). In 

contrast, activation of NF-κB was not significantly increased in KO hearts at any time 

following reperfusion (Figure 3C).

To explore the dependence of NF-κB activation on opening of the mitochondrial PT pore 

and development of necrosis, mice were treated with cyclosporin A (CsA 10mg/kg, 

administrated intravenously 10 min before reperfusion). CsA treatment reduced cytochrome 

C release into cytosolic fractions following I/R, indicating effective PT pore inhibition 

(Figure 4A). Nuclear p65 translocation in response to I/R was, however, unchanged by CsA 

treatment (Figure 4B). This observation suggests that I/R can induce NF-κB activation 

independent of necrotic damage to mitochondria, consistent with the very rapid onset of NF-

κB activation.

Transcriptome analysis of I/R injury in WT and CaMKIIδ hearts

We used Affymetrix Gene arrays to compare changes in mRNA levels at 24-hrs reperfusion 

following 1-hr ischemia in WT and KO mouse hearts. There were 3129 differentially 

expressed transcripts in WT versus CaMKIIδ KO after I/R (interaction P<0.05 and 

minimum fold between groups > 20%) as shown in Figure 5A. The 5kb promoters of these 

differentially expressed genes were scanned for enrichment of evolutionarily conserved 

(human to mouse) transcription factor binding sites using the Whole Genome RVista tool29. 

Transcription factor binding sites enriched in the differentially regulated genes included 
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those for the known CaMKIIδ target MEF2c (−log10, P=12.3)30 and those for NF-κB 

(−log10 P=10.3). There were 313 predicted NF-κB target genes upregulated in WT hearts 

which were significantly suppressed or downregulated in CaMKIIδ KO hearts (Online Table 

II). Many of these genes clustered by Gene Ontology (GO) analysis into categories related to 

apoptosis, cytokine signaling and regulation of NF-κB signaling. A diagrammatic 

representation including some of the I/R regulated, CaMKII dependent NF-κB target genes 

is shown in Figure 5B.

CaMKII signaling to NF-κB

To directly demonstrate and determine the mechanism for CaMKII effects on NF-κB 

activation we expressed constitutively active CaMKIIδ in neonatal rat cardiomyocytes. The 

amount of nuclear p65 was increased in cells expressing CaMKIIδ (Figure 6A). In addition 

we determined that I kappa B kinase (IKK), a proximal kinase in the NF-κB signaling 

cascade, was phosphorylated when CaMKII activity was increased (Figure 6B). 

Pharmacological inhibiton of IKK with BMS-345541 blocked the ability of CaMKII to 

increase nuclear p65 (Figure 6A). These data suggest that CaMKII activates IKK to initiate 

NF-κB signaling. To test the importance of IKK activation and NF-κB signaling using the in 

vivo I/R injury model, BMS-345541 was administrated to mice intravenously at 2mg/kg 10 

min before reperfusion. The efficacy of IKK inhibition was evidenced by the ability of this 

drug to significantly decrease I/R induced NF-κB activation in WT mice (Figure 6C, third 

vs. fourth bars). Treatment of WT mice with BMS-345541 lead to a 31% decrease in infarct 

size (Figure 6D). In contrast the inhibitor did not further reduce I/R induced NF-κB 

activation or infarct size in KO mice (Figure 6C,D). The lack of additive protection by 

CaMKIIδ deletion plus NF-κB inhibition is consistent with there being a common 

mechanism underlying the benefit of deleting CaMKIIδ and of inhibiting NF-κB signaling. 

The finding that there is no additional benefit to CaMKII deletion when IKK is inhibited 

supports the cell based studies showing that CaMKII regulates NF-κB signaling in 

cardiomyocytes through IKK, rather than by regulating a more distal process in the NF-κB 

activation cascade.

Cardiac specific CaMKIIδ deletion and NF-κB signaling

The rapid activation of CaMKII and NF-κB suggests that this pathway is directly regulated 

by increases in Ca2+ and ROS signaling in cardiomyocytes. Nonetheless, it is possible that 

CaMKII regulates NF-κB signaling in inflammatory cells that are activated in or recruited to 

the heart during reperfusion. To directly demonstrate that the I/R protection afforded by 

CaMKIIδ deletion results from effects in the cardiomyocyte compartment we used cardiac 

specific CaMKIIδ KO (CKO) mice generated by crossing CaMKIIδfl/fl with MLC2v-Cre 

mice28. Consistent with our reported findings using global KO hearts23, and indicative of 

selective loss of CaMKII activity in the CKO mice, the basal phosphorylation of RyR2 and 

PLN at their CaMKII, but not at their PKA, phosphorylation sites was significantly reduced 

(Online Figure IIA). Cardiac specific deletion of CaMKIIδ did not, however, alter 

ventricular chamber dimension, wall thickness or cardiac function as assessed by 

echocardiography in mice at 2 months of age (Online Figure IIB). Cardiac specific CaMKIIδ 

KO mice subject to in vivo I/R were protected to an extent similar to that observed in the 

global CaMKIIδ KO mice. Infarct size/AAR was reduced to 31.7±1.6% in CKO vs. 
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43.7±4.2% in Ctrl (fl/fl) mice (Figure 7A). The degradation of IκBα and activation of NF-

κB observed at early times (5 to 30 min) after reperfusion was also significantly inhibited by 

cardiac specific CaMKIIδ deletion (Figure 7 B–C). In addition, the subsequent development 

of inflammation, assessed by CD68 staining at 24-hrs, was markedly attenuated in the 

cardiac specific CaMKIIδ KO mouse hearts (Figure 7D). Thus CaMKII signaling within the 

cardiomyocyte compartment initiates NF-κB activation and thereby contributes to I/R 

induced inflammation and infarct development.

DISCUSSION

The role of CaMKII in ischemic heart diseases

The current study provides evidence that CaMKIIδ is a mediator of the effects of I/R on 

IκBα degradation, NF-κB activation and upregulaton of putative NF-κB target genes and 

that its actions are mediated through IKK phosphorylation. This is the first report to utilize 

the cardiac specific CaMKIIδ KO mice generated in our laboratory. Studies using these mice 

provide evidence that deletion of CaMKIIδ within the cardiomyocyte results in no overt 

basal phenotype but markedly limits the ability of I/R to increase NF-κB activation. 

Concomitantly, CaMKIIδ gene deletion attenuates I/R induced cardiac inflammation, 

cardiomyocyte death, infarct development and loss of contractile function.

A series of studies from the Mattiazi group used the ex vivo isolated perfused heart to 

examine the involvement of CaMKII in global I/R injury16, 17. These studies concluded that 

the salutary effects of CaMKII inhibition result from preventing the disordered 

cardiomyocyte Ca2+ homeostasis that contributes to cell death and mechanical dysfunction 

following I/R. A primary target of CaMKII action was suggested by these studies to be the 

phosphorylation of phospholamban (PLN). We demonstrate that in vivo I/R increases 

phosphorylation of PLN and ryanodine receptor (RyR2) at CaMKII sites in WT but not in 

CaMKIIδ KO mice (Figure 1B). Thus I/R induced activation of CaMKII and 

phosphorylation of cytosolic Ca2+ handling proteins could contribute to mitochondrial 

dysfunction and subsequent necrotic cell death. Importantly, however, our data demonstrate 

that there is also a rapid CaMKII-mediated activation of NF-κB which is not secondary to 

necrosis and, while it may initially be protective31, sets into motion a subsequent series of 

proinflammatory processes. Furthermore whereas the ex vivo model used in the studies cited 

above can only assess short term responses, in vivo I/R brings into play a more 

physiologically complex and prolonged sequence of events. Reperfusion following ischemia 

in vivo is associated with influx of leukocytes and activation of endogenous inflammatory 

cells that contribute to development of apoptosis and cardiac inflammation. The studies 

presented here indicate that averting the early and proximal cardiomyocyte autonomous 

activation of NF-κB by CaMKIIδ deletion also significantly attenuates these more chronic 

inflammatory responses as well as the ventricular dysfunction observed 24 hrs after 

reperfusion.

In studies exploring the role of CaMKII in myocardial infarction, Singh et al linked CaMKII 

to inflammation, specifically focusing on complement factor B (CFB) gene expression and 

the deleterious effects of LPS and TNFα19. CaMKII activation was shown to be required for 

CFB expression in response to LPS and TNFα in isolated cardiomyocytes. Further studies 
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demonstrated that LPS-mediated activation of toll-like receptors, which contributes to 

cardiac NF-κB activation5, 32, 33, leads to CaMKII oxidation and activation in response to 

myocardial infarction34. The notion that increases in TLR and MyD88 activation lead to 

sustained CaMKII oxidation, contributing to NF-κB-mediated inflammatory gene 

expression following myocardial infarction, is wholly compatible with our data showing 

CaMKII-mediated increases in proinflammatory gene expression following in vivo I/R. 

What is most compelling, however, is that our studies also suggest that CaMKII is an 

initiator of inflammation through its direct role in NF-κB activation in the cardiomyocyte. 

Thus CaMKII serves as a trigger as well as an intermediate player in a sustained myocardial 

inflammatory cycle.

The role of CaMKII in NF-κB activation

As indicated in the introduction, NF-κB has been extensively implicated in myocardial I/R 

injury. There is abundant evidence that blocking NF-κB signaling limits infarct size, reduces 

neutrophil invasion and decreases inflammatory gene expression10–14, 35. Activation of NF-

κB proceeds through a number of distinct pathways that converge on the phosphorylation 

and subsequent proteasomal degradation of the IκB inhibitor protein. Degradation of this 

protein facilitates the translocation of NF-κB dimers to the nucleus where they bind target 

genes and activate transcription. In our studies comparing WT and CaMKIIδ KO mice we 

report, consistent with published studies12, that I/R leads to a rapid decrease in IκBα levels 

in WT mice. We demonstrate that IκBα degradation is attenuated by CaMKIIδ deletion 

suggesting that CaMKII either affects steps upstream of its phosphorylation or alters its 

proteasomal processing. We further show that both NF-κB nuclear translocation and it 

transcriptional activity are regulated through CaMKIIδ following I/R.

Our studies using BMS-345541, an inhibitor of IKK, the kinase responsible for IkB 

phosphorylation and its subsequent degradation, confirm the important role of NF-κB 

activation in infarct development following I/R. The data showing that pharmacological 

blockade of IκB kinase has no additional ameliorative effect when CaMKIIδ is deleted 

further imply that a common mechanism underlies the beneficial effects of blocking 

CaMKII and NF-κB signaling and suggests that NF-κB activation is directly downstream of 

CaMKII. Previous studies using neonatal rat cardiomyocytes and macrophages provided 

evidence that CaMKII can regulate NF-κB signaling19, 36, 37. Specifically, in neonatal rat 

cardiomyocytes CaMKIIδ overexpression was shown to increase IκBα degradation and NF-

κB-dependent promoter/luciferase activity36. We show here that a more proximal event, the 

activation of IKK, is regulated through CaMKIIδ in these cells. Whether IKK is a direct 

target of CaMKII-mediated phosphorylation remains to be determined. Nonetheless the 

finding that inhibiting IKK blocks the ability of CaMKII to elicit NF-κB activation in 

NRVMs and prevents further effects of CaMKII deletion on infarct development in the in 

vivo I/R model support the conclusion that IKK is the proximal site of CaMKII action.

NF-κB targets in CaMKII mediated I/R injury

We identified a significant number of genes with NF-κB binding sites in their 5’ upstream 

promoters that are upregulated by I/R in WT but not in CaMKIIδ KO mice. Which of these 

genes contribute to I/R-induced and CaMKII-mediated cardiomyocyte cell death, infarct 
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development and inflammation is not yet known. Anderson’s group focused on complement 

factor B (CFB) as a gene that responds to lipopolysaccharides (LPS) in a CaMKII dependent 

manner both in vitro and in vivo19. This is, however, only one of many genes detected in 

their gene arrays as CaMKII dependent19 and only one of the many genes identified in our 

arrays as being both CaMKII dependent and potentially NF-κB regulated. We specifically 

examined changes in the NF-κB regulated chemokine MCP-1 as a marker of inflammation, 

and demonstrated that the increases in MCP-1 protein expression seen 24 hrs after I/R are 

prevented by CaMKII deletion. Interestingly MCP-1 not only participates in chemoattraction 

but also regulates cell death pathways38, thus MCP-1 is a potential mediator through which 

NF-κB signals contribute to cardiomyocyte death and infarct expansion. Undoubtedly a 

multitude of proinflammatory gene products conspire to induce cardiomyocyte injury and 

contractile dysfunction following I/R. The profound ameliorative effect of CaMKIIδ 

deletion on the expression of myriad NF-κB target genes categorized as regulators of 

cytokine signaling and apoptosis implicates CaMKII as a nodal regulator of this process.

In summary, we demonstrate for the first time that CaMKIIδ mediates rapid NF-κB 

activation and the development of apoptosis and inflammation in response to I/R in the in 

vivo mouse heart. Our studies using cardiac specific CaMKIIδ KO mice reveal that the 

maladaptive effects of CaMKII signaling elicited by I/R are early events that occur in the 

cardiomyocyte compartment. The activation of NF-κB signaling is independent of necrosis 

and results in regulation of multiple NF-κB target genes. We suggest that oxidative stress or 

Ca2+ release during reperfusion initiate rapid CaMKIIδ activation which leads to 

cardiomyocyte autonomous IKK phosphorylation and NF-κB activation. The ensuing 

changes in cardiac gene expression and recruitment of infiltrating and resident inflammatory 

cells fuel the subsequent inflammatory cascade that contributes to further cardiomyocyte 

injury. Inhibiting CaMKII during reperfusion could provide significant therapeutic 

advantage by targeting an early causal event in this cascade.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations

I/R ischemia/reperfusion

CaMKII Ca2+/calmodulin-dependent kinase II
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KO knockout

CKO cardiac specific knockout

NF-κB nuclear factor kappa B

TNFα tumor necrosis factor alpha

IL- 6 Interleukin-6

LAD left anterior descending

IS infarction size

AAR area at risk

LV left ventricle

CsA cyclosporin A

IKK I kappa B kinase

RyR2 type 2 ryanodine receptor

PLN phospholamban

PT pore mitochondrial permeability transition pore
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NOVELTY AND SIGNIFICANCE

What Is Known?

• Calcium/calmodulin dependent kinase (CaMKII) is activated by calcium and 

reactive oxygen species (ROS).

• Reperfusion of the ischemic heart is associated with increased myocardial 

calcium and ROS generation, which lead to cardiac dysfunction.

• NF-κB, a master regulator of inflammation, contributes to tissue injury induced 

by cardiac ischemia/ reperfusion (I/R.)

What New Information Does This Article Contribute?

• CaMKII is activated within minutes of reperfusion and is required for NF-κB 

activation following in vivo I/R.

• CaMKII activates NF-κB directly by phosphorylating its upstream kinase - IKK.

• Activation of NF-κB by CaMKII is an early, cardiomyoctyte autonomous 

response that is critical for long- term inflammation, myocardial tissue injury 

and contractile dysfunction.

The mechanisms responsible for NF-κB activation in response to cardiac ischemia/

reperfusion are unknown. I/R associated increases in Ca2+ or ROS should activate 

CaMKII, but direct evidence is lacking. We found that CaMKII activity is rapidly 

increased in response to reperfusion and that CaMKII is required for subsequent 

activation of NF-κB. We demonstrate that these responses occur in a cardiomyocyte in a 

necrosis-independent manner and that CaMKII increases NF-κB activity through 

phosphorylation of its upstream kinase IKK. Deletion of CaMKII in cardiomyocytes 

prevents I/R mediated increases in NF-κB target gene expression, leads to a decrease in 

infarct size, and improved ventricular function at 24 h after I/R. These findings suggest 

that CaMKII-mediated NF-κB activation is an initiating signal that occurs in 

cardiomyocytes and is responsible for subsequent I/R injury. Blocking CaMKII could 

ameliorate excessive NF-κB mediated responses associated with various inflammatory 

diseases and in particular prove to be a viable therapeutic target for preventing the 

deleterious effects of myocardial reperfusion.
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Figure 1. CaMKII is activated by in vivo myocardial ischemia/reperfusion and CaMKIIδ 
deletion reduces infarct size and enhances functional recovery
Animals were subjected to 1-hr ischemia followed by various times of reperfusion. (A) 

Increases in autonomous CaMKII activity were measured at 3-min reperfusion. Data are 

mean ± SEM of values from 3 mice. *p<0.05 versus Sham. (B) Phosphorylation of RyR2 

and PLN at the CaMKII site was assessed in WT and CaMKIIδ KO mice at various times of 

reperfusion. Data are mean ± SEM of values from 3 determinations. *p<0.05 vs WT Sham. 

(C) Area at risk (AAR) and the ratio of infarct size to AAR were determined in WT and KO 

mice at 24-hr reperfusion. Data are mean ± SEM of values from 6 mice. (D) The maximum 

rates of rise and decline of left ventricular pressure (dP/dtmax and dP/dtmin) assessed at 24-

hr reperfusion. Data are mean ± SEM of values from 8 mice. *p<0.05 versus WT. The dP/
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dtmax and dP/dtmin values in sham-operated mice (~8500 and ~−6500 mmHg/sec 

respectively) were not significantly different for WT and KO.
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Figure 2. CaMKIIδ deletion reduces apoptosis and inflammation following in vivo ischemia/
reperfusion
Endpoints indicative of apoptosis and inflammation were assessed at 24-hr reperfusion 

following 1-hr ischemia. (A) TUNEL staining; apoptotic nuclei were stained (green) and 

cardiomyocytes were detected by wheat germ agglutinin staining (red). Original 

magnification is 20×. Data are mean ± SEM of values from 3 hearts per group, with at least 

5,000 nuclei examined per heart. *P < 0.05 versus WT I/R. (B) DNA laddering. (C) Cleaved 

caspase-3 as detected by Western blotting. Data are mean ± SEM of values from 3–4 

determinations. *p<0.05 vs Sham; #p<0.05 vs WT I/R. (D) Inflammatory cells were 

identified by CD68 staining. Original magnification is 20×. (E) MCP-1 expression levels 

measured by Western blotting. Data are mean ± SEM of values from 3–4 determinations. 

*p<0.05 vs Sham; #p<0.05 vs WT.
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Figure 3. CaMKIIδ deletion inhibits IκBα degradation, NF-κB nuclear localization and NF-κB 
activity in response to in vivo I/R
Animals were subjected to 1-hr ischemia followed by various times of reperfusion. (A) 

Degradation of IκBα was detected by Western blotting in hearts exposed to in vivo ischemia 

followed by various times of reperfusion. Data are mean ± SEM of values from 3–6 

determinations. *p<0.05 vs Sham; #p<0.05 vs WT I/R. (B) Translocation of NF-κB p65 to 

the nucleus was detected by Western blotting following nuclear fractionation. Lamin A/C 

was used as a loading control. Data are mean ± SEM of values from 3–6 determinations. 

*p<0.05 vs Sham; #p<0.05 vs WT I/R. (C) NF-κB activity was measured by the TransAM 

oligonucleotide binding assay. Data are mean ± SEM of values from 3–6 samples. *p<0.05 

vs Sham; #p<0.05 vs WT I/R.
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Figure 4. Inhibition of necrosis by CsA does not reduce NF-κB activation in response to in vivo 
I/R
Hearts were collected from mice treated ±CsA at 15-min reperfusion following 1-hr 

ischemia (A) Cytochrome C expression detected by Western blotting in mouse heart 

cytosolic fractions. GAPDH and VDAC were used as cytosolic and mitochondrial loading 

controls to assess purity of cytosolic fractions. Data are mean ± SEM of values from 3–4 

determinations. #p<0.05 vs I/R (B) Translocation of NF-κB p65 to the nucleus was detected 
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by Western blotting in nuclear fractions from the same hearts. Lamin A/C was used as a 

loading control. Data are mean ± SEM of values from 3–4 mice. *p<0.05 versus Sham.
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Figure 5. Clustering and functional annotation of transcripts differentially regulated by I/R in 
WT and CaMKIIδ hearts
(A) We identified 3129 transcripts that had a significant interaction (P<0.05) by genotype 

and I/R and clustered them with the HOPACH algorithm to identify major patterns of 

regulation. Rows represent probesets, columns are arrays; red indicates increase in 

expression and green indicates decreases in expression compared to baseline (sham) for each 

genotype (B) Network representation of selected gene ontology processes for the NF-κB 

target genes that are upregulated by I/R in WT versus CaMKIIδ KO hearts (i.e. putative NF-

κB target genes from clusters 2, 3 and 9). Grey nodes represent gene ontology terms. Red 

and green nodes respectively represent genes upregulated and downregulated by I/R, with 

intensity correlated with the magnitude of the response. The central core color shows fold 

changes in WT hearts and the surrounding ring shows fold changes in CaMKIIδ KO hearts.
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Figure 6. CaMKII induces I kappa B kinase (IKK) phosphorylation and inhibition of IKK 
reduces NF-κB activation and infarct development in response to in vivo I/R
For A and B, neonatal rat ventricular myocytes (NRVMs) were infected with adenovirus 

expressing GFP or constitutively active CaMKIIδ at 40 M.O.I. and harvested 24-hr after 

infection. (A) Translocation of NF-κB to the nucleus was detected by Western blotting 

following nuclear fractionation of cells treated ±15µM BMS-345541. Lamin A/C was used 

as a loading control. Data are mean ± SEM of values from 3 samples. *p<0.05 versus 

AdCMV; #p<0.05 vs CaMKIIδ. (B) Phosphorylated IKK was detected by Western blot. 

Data are mean ± SEM of values from 3 samples. *p<0.05 versus AdCMV. For C and D, 

hearts were collected at 24-hr reperfusion following 1-hr ischemia. (C) NF-κB activation by 

in vivo I/R measured by the TransAM oligonucleotide binding assay in WT and KO mice 

pretreated for 10 min with 2mg/kg BMS-345541 or vehicle. Data are mean ± SEM of values 

from 3 mice. *p<0.05 vs WT without BMS treatment. (D) Area at risk (AAR) and Infarct 

size to AAR ratio (IS/AAR) following in vivo I/R ±BMS treatment. Data are mean ± SEM 

of values from 4–6 determinations. *p<0.05 vs WT without BMS treatment.
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Figure 7. Cardiac specific deletion of CaMKIIδ protects against in vivo I/R injury
Animals were subjected to 1-hr ischemia followed by 24-hr reperfusion. (A) Area at risk 

(AAR) and Infarct size to AAR ratio (IS/AAR) in control and CKO hearts following I/R. 

Data are mean ± SEM of values from 4–5 determinations. *p<0.05 vs Ctrl I/R. (B) 

Degradation of IκBα detected by Western Blotting in control and CKO mouse hearts 

following I/R. Data are mean ± SEM of values from 3 determinations. *p<0.05 vs control 

Sham; #p<0.05 vs CKO Sham. (C) NF-κB activity was determined at the end of 1hr 

ischemia and after various times of reperfusion in control and KO hearts by TransAM 

oligonucleotide binding assay. Data are mean ± SEM of values from 3–4 determinations. 

*p<0.05 vs Sham; #p<0.05 vs Ctrl I/R. (D) CaMKIIδ deletion reduces inflammation 

following I/R. Inflammatory cells were identified by CD68 staining. Original magnification 

is 20×.
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